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Heisenberg’s uncertainty relations employ commutators of observables to set
fundamental limits on quantum measurement. The information concerning
incompatibility (non-commutativity) of observables is well included but that
concerning correlation is missing. Schrödinger’s uncertainty relations remedy
this defect by supplementing the correlation in terms of anti-commutators.
However, both Heisenberg’s uncertainty relations and Schrödinger’s uncertainty
relations are expressed in terms of variances, which are not good measures
of uncertainty in general situations (e.g., when mixed states are involved). By
virtue of the Wigner–Yanase skew information, we will establish an uncertainty
relation along the spirit of Schrödinger from a statistical inference perspective
and propose a conjecture. The result may be interpreted as a quantification of
certain aspect of the celebrated Wigner–Araki–Yanase theorem for quantum
measurement, which states that observables not commuting with a conserved
quantity cannot be measured exactly.
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1. UNCERTAINTY RELATIONS: FROM HEISENBERG TO

SCHRÖDINGER

Shortly after Heisenberg invented matrix mechanics and Schrödinger
established wave mechanics around 1925, which constitute the new theory
of quantum mechanics, Heisenberg discovered the uncertainty principle
in 1927, (12) which was put into mathematical forms by Weyl (30) and



Robertson. (22) Now the standard forms of Heisenberg’s uncertainty rela-
tions for any two observables A and B are usually expressed as

Varr A · Varr B \ 1
4 |O[A, B]Pr |2. (1)

Here Varr A=tr rA2 − (tr rA)2 is the variance of A in the relevant
quantum state r (a mixed state in general) and Varr B is defined similarly.
O[A, B]Pr=tr r[A, B] is the average of the commutator [A, B]=
AB − BA in the state r. The conventional position-momentum uncertainty
relation is a particular case.

It is remarkable that the commutator, which is so characteristic in
quantum mechanics, makes its appearance here. Thus uncertainty relations
in Heisenberg’s form are intimately related to non-commutativity. The
above inequality shows clearly the limitations in the possibility of simulta-
neously assigning exact values to two non-commuting observables.

In recent years, especially in the newly emerging field of quantum
computation and quantum information, the phenomenon of entanglement
is widely studied in connection with Bell’s inequalities and teleporta-
tion, (20, 28) and with other foundational issues of quantum mechanics. Apart
from the ubiquitous feature of non-commutativity, one comes to recognize
that another distinguished feature of quantum mechanics is the strong
correlation in quantum world that cannot be accounted for in classical
mechanics. However, the uncertainty relations in Heisenberg’s form do not
encode any correlation between observables which is usually expressed
in terms of anti-commutators. It is amazing that Schrödinger in 1930
already established the uncertainty relations taking into account of the
correlation between observables, (23) though almost all quantum mechanics
text books have ignored this, and consequently, Schrödinger’s uncertainty
relations are left out of the general awareness of physicists for many years.
Only quite recently have Schrödinger’s uncertainty relations been studied
thoroughly by some authors. (25)

Schrödinger’s uncertainty relations are expressed in both commutator
(encoding non-commutativity) and anti-commutator (encoding correlation):

Varr A · Varr B \ 1
4 (|O[A, B]Pr |2+|O{A0, B0}Pr |2). (2)

Here O{A0, B0}Pr=tr r{A0, B0} denotes the average of the anti-commu-
tator {A0, B0}=A0B0+B0A0, and A0=A −OAPr, B0=B −OBPr. The first
term in the right hand side of (2) encodes incompatibility, while the second
term encodes correlation, between the observables A and B. Indeed, the
average of the anti-commutator is simply related to covariance as

O{A0, B0}Pr=Covr(A, B)+Covr(B, A)
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with the conventional covariance defined as

Covr(A, B)=tr rAB − tr rA · tr rB. (3)

The difference between Schrödinger’s uncertainty relations and
Heisenberg’s uncertainty relations is fundamental. The contribution due to
the correlation (expressed in terms of anti-commutators or covariance)
should be put at least on an equal footing with that due to incompatibility
(expressed in terms of commutators or incompatibility). In particular, the
correlation term plays a crucial role in studying composite quantum
systems. For example, consider a composite quantum system described by
a tensor product Hilbert space H1 é H2, where H1 and H2 are the Hilbert
spaces of the two component systems. Let a and b be observables for the
first and the second system, respectively. Define A=a é I2, B=I1 é b,
which are observables on H1 é H2 (here I1 and I2 denote the identity
operators on H1 and H2, respectively), then clearly A commutes with B,
and consequently, Heisenberg’s uncertainty relations (1) for A and B
reduces to a trivial inequality Varr A · Varr B \ 0 which does not provide
any useful information. But this is not the case for Schrödinger’s uncer-
tainty relations (2) since it is still a non-trivial inequality involving variances
and anti-commutator:

Varr A · Varr B \ 1
4 |O{A0, B0}Pr |2.

The place of the uncertainty principle in quantum mechanics is unique
and somewhat peculiar. To quote from the first section of the first chapter
of Landau and Lischitz’s celebrated quantum mechanics textbook: (15) In
that it rejects the ordinary ideas of classical mechanics, the uncertainty prin-
ciple might be said to be negative in content. Of course, this principle in itself
does not suffice as a basis on which to construct a new mechanics of particles.
Such a theory must naturally be founded on some positive assertions.

The main reason that such an impression prevails lies in the fact that
most people regard the uncertainty principle as a principle imposing
theoretical limitations of quantum measurement without precise quantita-
tive characterizations, and therefore, the enthusiasm is mainly devoted into
the physical interpretations and philosophical implications, rather than
precise mathematical derivations and characterizations, of the uncertainty
principle. The ubiquitous mathematical forms of uncertainty relations
involving variance and covariance are not very useful except for giving
some crude estimations and a rough idea. In particular, for mixed states,
the conventional covariance has a lot of shortcomings in characterizing
quantum correlation (entanglement).
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Several new measures quantifying uncertainty have been proposed by
many authors. A prominent measure is the Shannon entropy, and there
are many mathematical characterizations of uncertainty and of the uncer-
tainty principle by virtue of this information concept. (2, 8, 27) Recall how
the scenarios of statistical physics and communication engineering have
changed after the Shannon entropy is introduced to replace variance in
characterizing uncertainty (indeed, the principle of maximum entropy and
the informational characterizations of the second law of thermodynamics
have generated profound implications in physics), one may expect that
once the uncertainty principle is quantified more precisely, many more
physical results and laws can be derived naturally via symmetry arguments
and variational calculus from the uncertainty principle.

Another prominent measure related to uncertainty is the Fisher
information arising in the theory of statistical inference, (7) and there
are also many mathematical characterizations of uncertainty (or rather,
information) and of the uncertainty principle by virtue of the Fisher
information. (9, 10, 17, 18) Moreover, the Fisher information has many intrinsic
relevances to physics. (9) For instance, Hall and Reginatto provided an
interesting and stimulating derivation of Schrödinger’s equation from an
identity characterization of uncertainty relations by virtue of the Fisher
information. (11) Luo presented an informational derivation of the sinu-
soidal law (Malus’ law) for photon polarization based on the principle
of minimum Fisher information. (19) There are also various notions of
quantum Fisher information, which refine the notion of the conventional
variance in quantum detection and estimation theory. (13, 14)

Before we can do more physics from the uncertainty principle, we have
to establish more precise quantifications of uncertainty. In this paper, we will
show that how a quantity introduced by Wigner and Yanase in 1963, (32) the
skew information, arises naturally as a quantum generalization of the Fisher
information, and can be used to characterize uncertainty relations. In fact,
we will establish a new uncertainty relation of Schrödinger’s type by virtue of
the skew information. The result is not only stronger than the conventional
Heisenberg’s uncertainty relations (1), but also sheds considerable new light
on the relationships between the theories of quantum measurement and sta-
tistical inference. Moreover, it is strictly stronger than the Schrödinger’s
uncertainty relations (2) at least for two-dimensional quantum systems, and
for some cases as illustrated in a variety of examples. Whether this is true in
general remains open (though we strongly believe so). The result is also
intimately related to certain quantitative aspect of the Wigner–Araki–Yanase
theorem concerning quantum measurement, which states that the presence of
a conservation law imposes a limitation on the measurement of observables
which are incompatible (not commuting) with the conserved quantity. (1, 33)
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2. FISHER INFORMATION AND SKEW INFORMATION

Consider a natural problem in the theory of statistical estimation:
Suppose {ph: h ¥ R} is a family of probability densities on R parameterized
by h, and we have observed samples x1,..., xn, each is a random variable
(independently) distributed according to ph for some fixed unknown h, we
want to estimate this h as precise as possible by virtue of the available data.

In this context, the Fisher information defined by (6, 7)

IF(ph)=4 F 1“ `ph(x)

“h
22

dx (4)

is a central concept. The celebrated Cramér–Rao inequality and the asymp-
totic normality of maximum likelihood estimation are both phrased in
terms of the Fisher information. (6) Moreover, the Fisher information is
intimately related to the Shannon entropy via the elegant de Bruijin iden-
tity, (24) plays a pivotal role in quantifying Heisenberg’s uncertainty principle
from a statistical inference perspective, (9, 10, 17, 18) and even has interesting
applications in some probability problems. (3, 4)

It is remarkable that the probability amplitude `ph(x), so funda-
mental in quantum mechanics, manifests itself here. In particular, when
ph(x)=p(x − h), by the translation invariance of the Lebesgue integral, we
have

IF(ph)=4 F 1“ `p(x)

“x
22

dx.

Thus in this circumstance, IF(ph) is independent of h, and we can denote
IF(ph) simply by IF(p). It is the Fisher information of p with respect to the
location parameter, and is reminiscent of the kinetic energy functional.

Remark. The Fisher information can be rewritten as

IF(ph)=F 1“ log ph(x)
“h

22

ph(x) dx. (5)

In this expression, the statistical score function “ log ph(x)
“h

, so useful in statis-
tical inference, makes its appearance. It is probably the coincidence of the
Fisher information defined by Eq. (4), which involves the probability
amplitude, and by Eq. (5), which involves the statistical score function, that
renders the Fisher information so useful in studying certain quantum
mechanical issues from a statistical inference perspective.
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When we pass from classical theory to quantum mechanics, the
integral is replaced by trace, the probability densities are replaced by
density operators. Motivated by (4), for a family of quantum states rh,
h ¥ R, let us define heuristically

IF(rh)=4 tr 1“ `rh

“h
22

which may be viewed as a generalization of the classical Fisher information
to quantum case. Let us just call it quantum Fisher information. Of course,
quantum generalizations of the Fisher information are not unique, and
there are many others such as those defined via symmetric logarithmic
derivative and via right logarithmic derivative which are related to the
theory of quantum detection and quantum estimation, (13, 14) and those
defined via general operator monotone functions, (21) but we will not pursue
them here.

In particular, if rh satisfies the Landau–von Neumann equation (we
put (=1)

i
“rh

“h
=[A, rh], r0=r

where h ¥ R is a (temporal or spatial) parameter, and A may be interpreted
as the generator of the temporal shift or the spatial displacement, then
rh=e−ihAre ihA, and

“ `rh

“h
=ie−ihA[r1/2, A] e ihA,

which in turn implies that

IF(rh)=8I(r, A)

with I(r, A) defined as

I(r, A)=− 1
2 tr[r1/2, A]2. (6)

Remarkably, this I(r, A) is precisely the skew information introduced by
Wigner and Yanase as the amount of information on the values of observ-
ables not commuting with A. (32) Therefore, the skew information is essen-
tially a particular kind of quantum Fisher information! With this observa-
tion in mind, it is not surprising that the skew information has so many
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nice properties expected from a measure of information, and is relevant to
the theory of quantum measurement. In fact, Wigner and Yanase argued
and proved that this quantity satisfies all the desirable intuitive require-
ments of an information measure, (32) among which the basic ones are:

1. Invariance

Let U be a unitary operator, then

I(UrU−1, A)=I(r, U−1AU).

In particular, if U commutes with A, then

I(UrU−1, A)=I(r, A).

When the state changes according to the Landau–von Neumann equation
generated by A, we have U=e−ihA, which commutes with A, therefore
the skew information remains constant for isolated systems. Moreover,
I(r, A+A0)=I(r, A) for any A0 commuting with r.

2. Convexity

Let r1 and r2 be two quantum states described by density operators,
then

I(l1r1+l2r2, A) [ l1I(r1, A)+l2I(r2, A)

for any l1+l2=1, l1 \ 0, l2 \ 0. The above convexity means that the
information content of mixing of two ensembles should be smaller than the
average information content of the component ensembles, that is, the skew
information decreases when two different ensembles are united, since by
uniting, one ‘‘forgets’’ from which a particular sample stems.

3. Additivity

Let r1 and r2 be two density operators describing the first system and
the second system respectively, A1 and A2 be the corresponding conserved
quantities, then

I(r1 é r2, A1 é I2+I1 é A2)=I(r1, A1)+I(r2, A2).

Here A1 é I2 denotes the tensor product of A1 in the first system with the
identity operator in the second system, and I1 é A2 is defined similarly. The
above identity means that the skew information is additive under tensor
product, namely, the information content of a system composed of two
independent parts is the sum of information of the parts.
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The Wigner–Yanase skew information can be rewritten as

I(r, A)=tr rA2 − tr r1/2Ar1/2A. (7)

In particular, if r=|YPOY| is a pure state, then

I(r, A)=Varr A=OY| A2 |YP−OY| A |YP2.

Therefore, I(r, A) may also be regarded as a measure of uncertainty of A,
and for pure states, it reduces to variance. This is in accordance with
the intuition based on the principle of complementarity, since the larger the
variance of A (which means the less information we can have about the
value of A), the more information we can have about an observable which
does not commute with (is skew to) A by complementarity, thus corre-
sponding to larger skew information. Moreover, if the quantum state r is
an eigenstate of A, then I(r, A)=0. To gain a more intuitive insight of this
relation, take A to be the position observable and r to be an eigenstate
of A, then I(r, A)=0, and this means that the skew information of any
observable not commuting with A (e.g., momentum observable) is zero.
Indeed, the value of the momentum observable is equally probable over the
whole line (thus we have the least information about the value of momen-
tum) when the quantum system is in a position eigenstate.

In summary, we have clarified the statistical idea underlying the
Wigner–Yanase skew information, and have put it into the context of the
theory of statistical estimation and have related it to variance.

Remark. The Wigner–Yanase skew information is later on general-
ized by Dyson to

Ia(r, A)=− 1
2 tr[ra, A][r1 − a, A], 0 < a < 1,

and the famous Wigner–Yanase–Dyson conjecture concerning the convexity
of Ia(r, A) with respect to r is solved by Lieb. (16) Another generalization to
the setting of operator algebras is made by Connes and Stormer, (5) and
plays a crucial role when they proved the homogeneity of state spaces of
III1 von Neumann algebras.

Remark. The Wigner–Yanase skew information has its origin in the
theory of quantum measurement. In quantum mechanics, it is typical that
some observables are more difficult to measure than others. Wigner dem-
onstrated that the observables which do not commute with an additive
conserved quantity are more difficult to measure than those which com-
mute with the conserved quantity. (31) This phenomenon is closely related,
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but not equivalent, to Heisenberg’s uncertainty principle. Pursuing Wigner’s
idea further, Araki and Yanase established rigorously that observables not
commuting with a conserved quantity cannot be measured exactly, only an
approximate measurement is possible, and there is a trade-off between the
‘‘size’’ of the measuring apparatus and measuring accuracy. (1, 33) This is
the celebrated Wigner–Araki–Yanase theorem for quantum measurement,
and the Wigner–Yanase skew information is introduced to quantify certain
aspect of this result. The observable A serves as a conserved quantity such
as a Hamiltonian, a momentum, or other conserved quantities. Formally,
I(r, A) may also be interpreted as a measure of non-commutativity
between r and A with asymmetric emphasis on the state r and on the con-
served observable A. (5)

3. THE WIGNER–YANASE CORRELATION

Covariance is usually used to characterize the correlation between two
observables in a given quantum state. Alternatively, it can also be used to
characterize the intrinsic correlation of a quantum state, given the two
observables fixed. That is, Covr(A, B) may be used as a measure to quan-
tify the ‘‘correlation strength’’ of the state r. The observables A and B
serve here as testing observables.

The distinction between classical and quantum correlation is funda-
mental and subtle, and it is a difficult and thorny problem as how to
distinguish between them. In this respect, the conventional covariance
often gives ambiguous results. Let us demonstrate this point by a simple
example.

Example 1. Let C2 be a qubit space with orthonormal base
{|‘P, |aP} which are the two eigenvectors of the Pauli Spin-z operator
sz=( 1

0
0

−1) with eigenvalues +1 and − 1, respectively. Let H1=C2,
H2=C2, and form the composite quantum system H1 é H2=C2 é C2

=C4. Then {|‘‘P, |‘aP, |a‘P, |aaP} constitute an orthonormal base
for C4. Take a quantum state

r=1
2 (|‘‘PO‘‘|+|aaPOaa|)

and

A=sz é I2, B=I1 é sz.

Then direct calculation leads to

Covr(A, B)=1.
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On the other hand, if we take

rŒ=|YPOY|

with |YP= 1
`2

(|‘‘P+|aaP), then

CovrŒ(A, B)=1.

From the entanglement point of view, the two states r and rŒ are
very different: The former is a mixture of two disentangled states, while the
latter is a Bell state which is maximally entangled, and the covariance
cannot distinguish between them. In this sense, the conventional covariance
has a limited use in characterizing entanglement. We will introduce a new
quantity which has some advantages in quantifying entanglement from an
informational perspective.

Motivated by the definition of the Wigner–Yanase skew information,
Eq. (7), we define a correlation measure for two observables A and B in
any quantum state r as

Corrr(A, B)=tr rAB − tr r1/2Ar1/2B. (8)

We shall call this the Wigner–Yanase correlation, and compare it with
the conventional covariance defined by Eq. (3). (More generally, we may
define Corrr(X, Y)=tr rXgY − tr r1/2Xgr1/2Y as an inner product on the
space of all bounded linear operators). In particular,

Corrr(A, A)=tr rA2 − tr(r1/2A)2=− 1
2 tr[r1/2, A]2

is exactly the skew information I(r, A) introduced by Wigner and Yanase
when they study the information contents of quantum states and the theory
of quantum measurement. (32) This concept is closely related to the quantum
theory of measurement. It can be easily shown that if r=|YPOY| is a pure
state, then

Covr(A, B)=Corrr(A, B)

for any observables A and B.
The Wigner–Yanase correlation has the following properties:

(1) Corrr(A, B)=Corrr(B, A).
(2) Corrr(A − a, B − b)=Corrr(A, B) for any real constants a, b.
(3) Corrr(aA, bB)=ab Corrr(A, B) for any real constants a, b.
(4) CorrUrU − 1(A, B)=Corrr(U−1AU, U−1BU) for any unitary opera-

tor U.
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From Example 1, we have seen that the conventional covariance has a
limited use in characterizing quantum correlation. We now illustrate by an
example that the Wigner–Yanase correlation has certain advantages in this
respect.

Example 2. Let r, rŒ, A, and B be the same as in Example 1. Then
in the canonical base {|‘‘P, |‘aP, |a‘P, |aaP}, we can write

r=
1
2
R1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

S , rŒ=
1
2
R1 0 0 1

0 0 0 0
0 0 0 0
1 0 0 1

S
and

A=R1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1

S , B=R1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 − 1

S .

Now direct calculation leads to

Corrr(A, B)=0, CorrrŒ(A, B)=1.

Thus the Wigner–Yanase correlation indeed distinguishes the states r and rŒ.
This is in sharp contrast to the conventional covariance.

One may wonder what is the relationship between the covariance
Covr(A, B) and the Wigner–Yanase correlation Corrr(A, B). In this
respect, we have Covr(A, B) \ Corrr(A, B) when A=B, that is, Varr A \

I(r, A), as will be shown in the next section. But in general, there is no
simple dominant relations between them, as illustrated by the following
examples.

Example 3. Let us take a Hilbert space C4. Take a quantum state to
be

r=
1
4
R1 0 0 1

0 1 0 0
0 0 1 0
1 0 0 1

S
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and two observables

A=R1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1

S , B=R1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 − 1

S .

The state r can be diagonalized as

r=U R0 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

2

S U−1, with unitary U=
1

`2
R 1 0 0 1

0 1 1 0
0 − 1 1 0

− 1 0 0 1

S .

From this we obtain

r1/2=
1
2
R

1
`2

0 0 1
`2

0 1 0 0
0 0 1 0
1

`2
0 0 1

`2

S .

Now, by the definitions, Eqs. (3) and (8), simple calculation leads to

Covr(A, B)=0, Corrr(A, B)=1
2 .

Thus in this example, we have

|Covr(A, B)| < |Corrr(A, B)|.

Example 4. For any p satisfying 0 [ p [ 1, take the quantum state
to be

r=
1
4
R1+p 0 0 2p

0 1 − p 0 0
0 0 1 − p 0

2p 0 0 1+p

S
and two observables A and B the same as in Example 3.
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The state r is actually the Werner state introduced in quantum infor-
mation theory, (20, 28) and it can be diagonalized as

r=V R
1 − p

4 0 0 0
0 1 − p

4 0 0
0 0 1 − p

4 0
0 0 0 1+3p

4

S V−1,

with unitary V=
1

`2
R 0 1 1 `2

`2 1 − 1 0

− `2 1 − 1 0

0 − 1 − 1 `2

S .

From this we obtain

r1/2=
1
4
R`1+3p+`1 − p 0 0 `1+3p − `1 − p

0 2 `1 − p 0 0

0 0 2 `1 − p 0

`1+3p − `1 − p 0 0 `1+3p+`1 − p

S .

Now, straightforward calculation leads to

Covr(A, B)=p, Corrr(A, B)=1
2 (1+p − `(1+3p)(1 − p)).

Simple verification shows that in this case

|Covr(A, B)| > |Corrr(A, B)|

when 0 < p < 1.
In summary, the magnitude of the conventional covariance Covr(A, B)

may be larger, or smaller, than the Wigner–Yanase correlation Corrr(A, B).

4. SCHRÖDINGER’S UNCERTAINTY RELATIONS IN TERMS OF

SKEW INFORMATION

Before we derive an uncertainty relation in the spirit of Schrödinger
from a statistical inference perspective, we show that the Wigner–Yanase
skew information is dominated by variance.

Theorem 1. Let r be a quantum state (pure or mixed), then

Varr A \ I(r, A).
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Furthermore, when A is a non-degenerate observable, the equality holds if
and only if r is a pure state.

Proof. We will prove the result by writing r in spectral form and
evaluating both Varr A and I(r, A) in the orthonormal base diagonalizing r.

Let r be written in spectral decomposition form

r=C
m

lm |kmPOkm |.

For simplicity, we assume that r is non-degenerate and thus {|kmP} consti-
tute an orthonormal base. Then

tr rA=C
m

Okm | rA |kmP=C
m

lm Okm | A |kmP,

and

tr rA2=C
m, n

lm Okm | A C
n

|knPOkn | A |kmP

=C
m, n

lm |Okm | A |knP|2

=C
m, n

lm+ln

2
|Okm | A |knP|2,

therefore, the variance of A in the state r satisfies

Varr A=tr rA2 − (tr rA)2

=C
m, n

lm+ln

2
|Okm | A |knP|2 −1C

m
lm Okm | A |kmP2

2

= C
m ] n

lm+ln

2
|Okm | A |knP|2+C

m
lm |Okm | A |kmP|2

−1C
m

lm Okm | A |kmP2
2

\ C
m ] n

lm+ln

2
|Okm | A |knP|2.

The last inequality follows from the Cauchy–Schwarz inequality. On the
other hand,
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I(r, A)=tr rA2 − tr r1/2Ar1/2A

=C
m, n

lm+ln

2
|Okm | A |knP|2 − C

m, n
Okm | r1/2A |knPOkn | r1/2A |kmP

=C
m, n

lm+ln

2
|Okm | A |knP|2 − C

m, n
l1/2

m l1/2
n |Okm | A |knP|2

= C
m ] n

lm+ln − 2l1/2
m l1/2

n

2
|Okm | A |knP|2.

Now the conclusion follows readily.
The following theorem provides a characterization of the uncertainty

principle in the spirit of Schrödinger by virtue of the Wigner–Yanase skew
information.

Theorem 2. Let A, B be two observables, and r a quantum state,
then

I(r, A) · I(r, B) \ 1
4 |O[A, B]Pr |2+ 1

16 |I(r, A+B) − I(r, A − B)|2.

In particular,

I(r, A) · I(r, B) \ 1
4 |O[A, B]Pr |2.

Proof. Thanks to the cyclic property of trace, the Wigner–Yanase
correlation defines an inner product in the space of all bounded operators:

Corrr(X, Y)=tr rXgY − tr r1/2Xgr1/2Y.

Clearly, for self-adjoint operators (observables) A and B,

Corrr(A, A)=I(r, A), Corrr(B, B)=I(r, B).

From

1
2 (I(r, A+B) − I(r, A − B))=Corrr(A, B)+Corrr(B, A)

O[A, B]Pr=tr r[A, B]=Corrr(A, B) − Corrr(B, A),

we obtain

2 Corrr(A, B)=1
2 (I(r, A+B) − I(r, A − B))+O[A, B]Pr.
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In the right hand side, the first term is real, while the second term is purely
imaginary, therefore

4 |Corrr(A, B)|2=|O[A, B]Pr |2+1
4 (I(r, A+B) − I(r, A − B))2,

but by the Schwarz inequality,

|Corrr(A, B)|2 [ Corrr(A, A) · Corrr(B, B)=I(r, A) · I(r, B).

The conclusion follows.

Remark. The term O[A, B]Pr is related to the incompatibility (non-
commutativity) between A and B, while the term

1
2 (I(r, A+B) − I(r, A − B))=Corrr(A, B)+Corrr(B, A)

is the correlation between A and B expressed in terms of the Wigner–
Yanase skew information or the Wigner–Yanase correlation. When r is a
pure state, it reduces to the conventional covariance.

In view of Theorem 1, we conclude that Theorem 2 implies the con-
ventional Heisenberg’s uncertainty relations (1) involving variances. When
r is a pure state, it reduces to the original Schrödinger’s uncertainty rela-
tions (2). When r is a mixed state, Theorem 2 establishes a new uncertainty
relation in the spirit of Schrödinger in the sense that it encodes correlation
information, and it is strictly stronger than Schrödinger’s uncertainty rela-
tions (2) at least for two-dimensional quantum systems, and for the situa-
tions described by all examples in this paper. However, whether it is
generally stronger remains open. We propose the following conjecture
which we strongly believe to be true:

Conjecture. It holds that

Varr A · Varr B − 1
4 |O{A0, B0}Pr |2

\ I(r, A) · I(r, B) − 1
16 |I(r, A+B) − I(r, A − B)|2,

or equivalently,

Varr A · Varr B − 1
4 |Covr(A, B)+Covr(B, A)|2

\ I(r, A) · I(r, B) − 1
4 |Corrr(A, B)+Corrr(B, A)|2. (9)

If this conjecture is true, then Theorem 2 will imply Schrödinger’s
uncertainty relations (2). The conjecture is supported by the following
concrete cases:

1572 Luo and Zhang



(1) If either A or B commute with r, then clearly, I(r, A)=0 or
I(r, B)=0, and Corrr(A, B)=0, thus in this circumstance, the conjecture
is true.

(2) It can be verified directly that the above conjecture holds when
r, A, and B are taken as in Examples 1–4.

In fact, in Examples 1 and 2, we have

Varr A=Varr B=1, Covr(A, B)=Covr(B, A)=1,

I(r, A)=I(r, B)=0, Corrr(A, B)=Corrr(B, A)=0.

VarrŒ A=VarrŒ B=1, CovrŒ(A, B)=Covr(B, A)=1,

I(rŒ, A)=I(rŒ, B)=1, CorrrŒ(A, B)=CorrrŒ(B, A)=1.

In Example 3, we have

Varr A=Varr B=1, Covr(A, B)=Covr(B, A)=0,

I(r, A)=I(r, B)=Corrr(A, B)=Corrr(B, A)=1
2 .

In Example 4, we have

Varr A=Varr B=1, Covr(A, B)=Covr(B, A)=p,

I(r, A)=I(r, B)=Corrr(A, B)=Corrr(B, A)=1
2 (1+p − `(1+3p)(1 − p)).

We see readily the conjecture holds true for all these cases.

(3) When the quantum system Hilbert space is two dimensional, and
thus r, A and B are all self-adjoint operators in C2, the conjecture is true.

To prove this, due to the covariant transformation properties

VarUrU − 1 A=Varr(U−1AU), CovUrU − 1(A, B)=Covr(U−1AU, U−1BU)

I(UrU−1, A)=I(r, U−1AU), CorrUrU − 1(A, B)=Corrr(U−1AU, U−1BU),

we may assume that r is diagonal (otherwise, diagonalizing r and absorb-
ing the unitary transformation into the observables) and non-degenerate
(otherwise r will be a pure state in C2 and (9) becomes an equality since
Varr A=I(r, A), Covr(A, B)=Corrr(A, B), etc, for pure state r). Thus it
suffices to check inequality (9) for

r=Rl1 0

0 l2

S , A=Ra11 a

ā a22

S , B=Rb11 b

b̄ b22

S .
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Here l1+l2=1, l1 > 0, l2 > 0, and a11, a22, b11, b22 are all real numbers,
while a and b may be complex. Due to the invariance of all the quantities
in (9) when A and B are translated by any constant real numbers, we may
assume without loss of generality that tr rA=0, tr rB=0. These imply
that

l1a11+l2a22=0, l1b11+l2b22=0.

From the above relations and noting the scaling property (inequality (9) is
invariant when A or B is multiplied by any real number), if aii ] 0, bii ] 0
(the zero coefficients cases can be verified directly or proved by a continu-
ity argument), we may further assume that

a11=b11=l2, a22=b22=−l1.

Now put L=`l1l2, we can easily compute

Varr A=L2+|a|2, Varr B=L2+|b|2

Covr(A, B)+Covr(B, A)=2L2+2 Re(ab̄),

and

I(r, A)=(1 − 2L) |a|2, I(r, B)=(1 − 2L) |b|2

Corrr(A, B)+Corrr(B, A)=(1 − 2L) 2 Re(ab̄).

Consequently, we have

Varr A · Varr B − 1
4 |Covr(A, B)+Covr(B, A)|2=L2 |a − b|2+|Im(ab̄)|2,

I(r, A) · I(r, B) − 1
4 |Corrr(A, B)+Corrr(B, A)|2=(1 − 2L)2 |Im(ab̄)|2.

We have used Re and Im to denote the real and imaginary part, respec-
tively, of a complex number. Since 0 [ L [ 1/2, inequality (9) follows.

5. DISCUSSIONS

The statistical origin and measurement-theoretic significance of the
Wigner–Yanase skew information are investigated from a statistical infer-
ence perspective: The skew information is a kind of quantum Fisher
information, and it is a useful notion in quantifying informational aspect of
quantum measurement, in particular, the uncertainty relations.
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We have introduced a new notion, the Wigner–Yanase correlation, to
characterize correlation and entanglement. We have shown that it has
certain advantages over the conventional covariance.

We have established an informational characterization of Schrödinger’s
uncertainty relations by virtue of the Wigner–Yanase skew information.
The motivation for this characterization comes from the desire to put the
uncertainty principle in a more fundamental place, and to make it more
useful in a quantitative treatment of quantum measurement.

Among many informational approaches to physics, a particularly
appealing and fruitful one is to consider quantum theory as a theory of
statistical inference based on observed experimental data. (9, 26, 29) This
approach depends crucially on various information quantities (such as the
Shannon entropy, the Fisher information and quantum Fisher informa-
tion) synthesizing the structural properties of the experimental data. Our
informational characterization of Schrödinger’s uncertainty relations sheds
new light on the statistical inference aspect of quantum theory.
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